Sensor Devices for Mobile and Wearable Applications

Nae-Eung Lee

School of Advanced Materials Sci. & Eng. SAINT SKKU Advanced Institute of Nanotechnology SAIHST Samsung Advanced Institute for Health Sciences and Technology Sungkyunkwan University (SKKU) Korea

Personalized smart healthcare technology

- diagnostics
- human monitoring
- therapeutics monitoring
- rehabilitation
- preventive medicine

Sensor-integrated mobile and wearable systems which can monitor physiological and clinical parameters at point-ofcare or home are promising for personalized smart healthcare technology.

Mobile and wearable POCT (point-care-testing) systems for personalized healthcare

N O B T R U S I V E

Mobile point-of-care testing (mPOCT) systems

Portable PoCTs: limits in connectivity and personalization

mPOCTs: advantage in connectivity (spatiotemporal mapping, epidemic demography, preventive healthcare) but limit of low accuracy and no standardization

Fluorescence imaging-based high accuracy biosensing for *m*POCT

ELISA is a gold standard in immunoassays

Smartphone-based "seesawed" fluorescence imaging for high accuracy apta-assay

False-negatives (FN) ↓ Sensitivity (TP/(FN+TP)) ↑

False-positives (FP) ↓ Selectivity (TN/(FP+TN)) ↑

W. Lee et al., Biosensors and Bioelectronics 94(2017), 643

Smartphone-based "seesawed" fluorescence imaging for high accuracy apta-assay

/

Smartphone-based fluorescence imaging of pathogenic bacteria for on-the-spot detection

Fluorescence imaging-based IOT-enabled on-the-spot POCT system

Skin-attachable sensor patches for wearable electronics

Accessary : non-invasive but limit in unobtrusive monitoring

Patch: non-invasive and unobtrusive monitoring, high SNR due to conformal contact with skin

Biostamp MC10

S-patch Samsung

What can be measured by skin-attachable sensor patches?

Engineering of skin-attachable sesnor patches

Stretchable materials	Sensing materials, electrodes, electrochemical electrodes, dry biopotential electrodes		
Devices	Stretchable sensors, energy harvesters, energy storage devices	human particular Manue	
Packaging	Substrate, dry adhesives, interconnect, encapsulation		
St	retchable materials & devices	Sens	or-integrated
Substrate	Stretchable interconnect Encapsulation	Circuits	Signal acquisition, power management , data handling
Biosensol	Chemical sensor Physical sensor	S/W	Applications, big data, Al
	sing Selective membrane	Clinical	New applications, clinical evaluation, services
Dry adhe	siveSelective membrane		-

Stretchable physical sensors for skin-attachable patches

Approaches for stretchability

Materials	Strategies	Designs		Process methods	Stretchable direction
Intrinsically stretchable components	Using intrinsically stretchable materials	PU-PEDOT:PSS(bottom) PU-PEDOT:PSS(bottom) PDMS	Elastomeric nanocomposites	Spin-coating, printing, spraying, electropsinning ACS Nano 2015 , 9, 6252	Omni-direction
Geometric engineering of compliant materials	In-plane, geometric engineering	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Serpentine routing	Patterning <i>Appl. Phys. Lett.</i> 2014 , <i>104</i> , 021908	Uniaxial
	Out-of-plane, geometric engineering		Wavy structure	Pre-stretching and release J. Vac. Sci. Technol. A 2009, 27, L9	Uniaxial, Biaxial
			Island-bridge	Transfer printing IEEE Trans. Compon. Packag. Manuf. Technol. 2015, PP, 1	Biaxial
			Imperceptible	Transfer on pre-strained ultrathin substrate Adv. Mater. 2015 , 27, 34	Unixial
	Out-of-plane, 3D structuring		Bio-mimicking	Soft lithography Adv. Sci. 2015, 2, n/a	Multi-direction, but not fully stretchable
		1000 C	Microstructrured pattern	Soft lithography spin coating, printing, spraying	Omni-direction

Approach 1: Intrinsically stretchable elastomeric nanocomposites

Nanomaterials

Transparent

- Thin films
- Sheets
- Nanofibers
- Microfibers

piezoelectric pyroelectric piezoresitive chemresistive thermoresistive photoresponsive electroactive

Stretchable, transparent and ultrasensitive strain sensor for emotion detection

Transmittance(%)

Stretchable, transparent and ultrasensitive strain sensor for emotion detection

Stretchable, transparent, ultrasensitive, self-powered strain sensor for activity monitoring

Stretchable, transparent, ultrasensitive, self-powered strain sensor for activity monitoring

Stretchable, transparent, ultrasensitive, self-powered strain sensor for activity monitoring

Reduced graphene oxide-PU channel PU gate dielectric and PEDOT:PSS-PU electrode

Simultaneous monitoring skin temperature and muscle movement during drinking hot water

Simultaneous monitoring skin temperature and muscle movement during workout

Approach 2: Mogul-patterned elastomeric substrate for stress-relieving

A versatile substrate for stretchable electronics

H.B. Lee et al., Adv. Mater., 28 (2016) 3086

Approach 2: Mogul-patterned elastomeric substrate for stress-relieving

- Omniaxially stretchable and stress of the layers are readily relived.
- Conventional processing (CVD, PVD, ALD, spin coating, spray coating, printing etc) can be used to form the layers directly on the substrate
- Multi-layer stacking is possible by forming layers directly on the 3D micropattern

Omniaxially stretchable R-GO gas sensor on mogul-patterned elastomeric substrate

Stability of Au electrode (70nm)

Omniaxially stretchable R-GO gas sensor on mogul-patterned elastomeric substrate

NO₂ sesning

Under stretched condition

Omniaxially stretchable piezoresistive pressure sensor on mogul-patterned substrate

Device Structure

Mogul-patterned PDMS PEDOT: PSS-**SWCNTs**

Ag paste

Pressure responsivity

Unstretched state \checkmark

Stability under stretching

Materials stability under stretching

- Device stability under stretching
- 0.4 stretch to 30% (uniaxial) release 0.2 0.0 -0.2 0.00 -0.05 -0.4 1.0 1.5 0.0 0.5 1.0 1.5 2.0 Time (sec)
- Under 30% stretching state \checkmark

E. Roh et al., Adv. Mater., 29 (2017) 1703004

Omniaxially stretchable piezoresistive pressure sensor on mogul-patterned substrate

Demonstration : Tremor detection

Resistance change,

✓ Skin area

Demonstration setup

- ✓ Vibration detection using ✓ FF
 the device
 - FFT (fast Fourier transform)

Vibration detection using the accelerometer in smartphone

Omniaxially stretchable piezoresistive pressure sensor on mogul-patterned substrate

Skin elasticity evaluation

Cutometer

Ballistometer

Relative skin elasticity

Omniaxially stretchable self-powered piezoelectric sensor

S. Siddiqui et al., Adv. Energy. Mater. 8 (2018) 1701520

Omniaxially stretchable self-powered piezoelectric sensor

Disposable stretchable biosensor patches for wPOCT

Disposable stretchable label-free electrochemical immunosensor for wound monitoring

 Cyclic voltammograms of a device under a) a non-stretched and 10, 20, and 30% stretched condition, b) without twisting and under twisting, and c) before cyclic stretching and after cyclic stretching 1000 times at 30% strain

• Differential pulse voltammograms of immunoreaction of TNF- α protein under 0 % (d) and 30 % (e) strain and calibration curve (f) in human serum

Perspectives

- Efforts toward the improvement of stability and reliability of the sensing nano-materials are required for real applications.
- Sensor-integrated systems need to be developed by considering the specific needs and service scenario.
- Collaborative research is essential for success.

Acknowledgments

• Group members :

Dr. Tien Thanh Ngyuen, Dr. Tran Quang Trung, Dr. Sajal Shrivastava, Dr. Le Thai Duy, Dr. Muhammad Saqib, Dr. Dang Vinh Quang, Do II Kim, II-Young Sohn, Bo-Yeong Kim, Byung-Ung Hwang, Young-Min Son, Eun Roh, Han-Byeol Lee, Won-il Lee, Ari Kim,

Sponsors :

National Research Foundation of Korea (NCRC, WCU, Basic Science Research Programs)

Thank you very much

VVVVV